🤖Models & Info

Query the /models endpoint with a GET request to get information about available online models including their specifications and capabilities.

curl https://api.modelsync.ai/v1/models

Response format:

{ "models": [{ "id": "Llama-3.3-70B-Instruct", "name": "Llama-3.3-70B-Instruct", "type": "text", "creator": "meta-llama", "parameter_size": "70B", "size": "large", "credit_cost": 2, "hf_link": "https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct", "quantization": "awq", "context_length": 8192, "max_completion_tokens": 400 }, { "id": "Llama-3.1-Nemotron-70B-Instruct-HF", "name": "Llama-3.1-Nemotron-70B-Instruct-HF", "type": "text", "creator": "nvidia", "parameter_size": "70B", "size": "large", "credit_cost": 2, "hf_link": "https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "quantization": "awq", "context_length": 8192, "max_completion_tokens": 400 }, ... ] }

âš¡Using Models

When making requests, specify the model using its ID in the model parameter:

{ "model": "Llama-3.3-70B-Instruct", "messages": [ {"role": "user", "content": "Hello!"} ] }

Tips for Best Results

  • Test different models to find the best fit for your specific use case - each model has its own strengths
  • Consider context_length (prompt tokens input + completion tokens output) requirements when choosing a model
  • Check model details on Hugging Face using the hf_link to understand model-specific parameters and capabilities
  • Monitor response times and credit costs to find the optimal balance for your usage